Régime magnétique de l'île de Bornholm.

Par

Adam Paulsen.

(Présenté dans la séance du 20 mars 1896.)

L'île de Bornholm est située dans la mer Baltique à 41 kilomètres au S.-E. de la pointe sud-est de la Suède, et à 155 kilomètres à l'E. de l'île de Seeland. Sa forme est celle d'un quadrilatère dont les deux côtés vont du N. au S., les deux autres du nord-ouest au sud-est. La pointe nord touche au 55°17′, la pointe sud au 55°0′ L.N. Les méridiens de 14°42′ et de 15°9′ à l'E. de Gr. coupent les côtes ouest et est. Dans les parties du nord, du nord-est et du centre, qui occupent les deux tiers de l'île, le sol consiste en granit parsemé de particules de combinaisons ferrugineuses. Un fragment de ce granit, d'une grandeur telle qu'on l'emploie pour les macadams, imprime à l'aiguille aimantée une déviation variant de quelques minutes à environ 2° quand on fait toucher à la pierre la cage du théodolite magnétique.

La limite du granit est marquée par une ligne ponctuée sur la carte donnant la situation des lieux où l'on a fait des mesures (fig. 1). Dans les parties sud le sol est essentiellement composé de grès.

Quelques mesures que j'ai effectuées en 1890 indiquent dans cette île des anomalies magnétiques très grandes. La déclinaison va en croissant de l'ouest à l'est, de sorte qu'en quelques points au milieu de la côte ouest elle est de 2° à 3° plus petite et vers les côtes est de 1° à 2° plus grande que ne devrait être cet élément magnétique s'il était dégagé de toute force perturbatrice.

Cette répartition anomale de la déclinaison montre que l'île de Bornholm attire vers ses côtes le pôle nord de l'aiguille. Le résultat des mesures fait donc présumer que cette île, qui s'élève d'une mer assez profonde tout près de ses côtes, est le siège d'un régime magnétique particulier et relativement limité.

J'ai donc repris les mesures magnétiques d'une manière plus systématique. C'est le résultat de ces observations, faites pendant quelques semaines d'été en 1891, 1892, 1893 et 1894, que j'ai l'honneur de présenter à l'Académie. Les stations où j'ai effectué des mesures sont au nombre de 103. Pour la plupart de ces stations j'ai déterminé les valeurs des trois éléments magnétiques.

Instruments de mesure.

Pour la détermination de la déclinaison et de la composante horizontale je me suis servi d'un théodolite magnétique de voyage du système Lamont, acquis aux frais du Carlsbergfond. Le cercle azimutal gradué de 10' en 10' a un diamètre de 17 cm. Les verniers donnent la demi-minute.

Outre le mouvement qui entraîne autour de l'axe vertical les verniers, la lunette et la règle pour la mesure des déviations, le mode de construction de l'instrument permet encore une autre rotation qui n'intéresse que la lunette et la cage. Ce dernier mouvement sert, pendant les mesures de déviations, à faire les pointés sans détourner la règle de sa direction perpendiculaire à l'aiguille. En effet si, quand la règle est installée dans une direction perpendiculaire au méridien magnétique, le miroir de l'aiguille n'est pas perpendiculaire à l'axe magnétique,

on peut, en ne tournant que la cage et la lunette, faire les pointés sans déplacer la règle. Les erreurs provenant de la collimation du miroir n'entrent donc pas, grâce à ce mode de construction, dans les mesures de déviations.

d'y poser un niveau pour déterminer l'inclinaison de l'axe. On peut donc faire des observations pour déterminer l'azimut du soleil sion ses observations pour determiner l'azimut du soleil sion ses observations pour determiner l'azimut du

Le cercle vertical de la houssole d'inclinaison a 11cm de diamètre. Il est gradué en demi-degrés; les traits sont tracés sur un miroir. Les lectures se font à l'aide d'une loupe à main, indépendante de l'appareil. L'aiguille a une longueur de 10cm.5; son axe d'acier pose sur deux agates, dont les bords supérieurs sont situés dans le même plan horizontal. Pendant les mesures l'instrument remplace la cage du théodolite et le plan du cercle vertical est dirigé suivant le méridien magnétique. La boussole n'a donc pas de cercle azimutal.

On peut à l'aide de cet instrument mesurer l'inclinaison avec une précision de 1' à 2' par rapport aux déterminations faites avec la boussole qu'on emploie à l'observatoire de Copenhague.

Déterminations absolues des éléments magnétiques.

obmini-imo Mesures de la déclinaison.

Le méridien géographique a été exclusivement déterminé par des observations du soleil servant à en déduire son azimut. Les coordonnées géographiques des stations où l'on a effectué des mesures sont tirées des cartes de l'état-major. Pour la détermination de l'heure on s'est servi d'un chronomètre de marine dont le temps avait été réglé sur le temps moyen de Copenhague par le télégraphe électrique que l'administration avait bien voulu mettre à ma disposition que l'administration

inutile de dire qu'on a pris toutes les précautions prescrites

par les méthodes ordinaires pour ne pas avoir de torsion mêmes on ces points peu distants. Mais pendant la delinitini

Les observations du soleil ont été répétées trois ou quatre fois. J'ai de même à chaque station fait trois ou quatre observations du méridien magnétique.

On a noté le temps de chaque pointé pour comparer les déterminations aux valeurs de la déclinaison tirées des courbes de variations de l'observatoire de Copenhague.

Le théodolite de voyage donnant une déclinaison de 1'.2 plus petite que celle que donne le grand théodolite de l'observatoire, on a réduit toutes les déterminations à celles qu'on aurait obtenues avec cet instrument.

Le système à double aiguille dont je me suis servi a toujours, pendant les mesures, été suspendu à la même hauteur dans la cage, ce qu'on peut faire par des visées.

Le résultat des mesures est résumé dans le tableau I qui termine ce mémoire. Dans ce tableau les longitudes sont comptées à partir du méridien de Copenhague. La colonne D donne la valeur de la déclinaison aux différentes stations aux instants où l'on a fait des mesures. Dans la colonne D_k sont portées les valeurs de la déclinaison pour les mêmes instants à Copenhague. Pendant les mesures aux stations 5, 14, 21 et 84 b la déclinaison a subi des perturbations à Copenhague. La dernière colonne D_0 donne les déclinaisons réduites à l'époque 1891.5, pour laquelle la déclinaison à Copenhague était de 11° 0'.6.

Aux stations nos 3 et 56 j'ai déterminé la déclinaison à deux époques différentes et précisément aux mêmes points. On voit que ces déterminations, réduites à 1891.5, diffèrent de 1'.2 et 0'.5 respectivement. On a fait aussi à la station 84 deux déterminations de la déclinaison, savoir en 1893 et en 1894. On n'a pas pour ces mesures pu se placer exactement au même point, les deux stations étant distantes de 30^m environ. Dans cette partie de l'île où le sol consiste en grès, on n'a pas constaté de perturbations tout à fait accidentelles. Il y a

donc lieu de croire que les déclinaisons sont sensiblement les mêmes en ces points peu distants. Mais pendant la dernière détermination la déclinaison a été très perturbée, de sorte que j'ai dû faire cinq déterminations dont j'ai pris la moyenne. On ne peut donc se fier à la concordance des résultats.

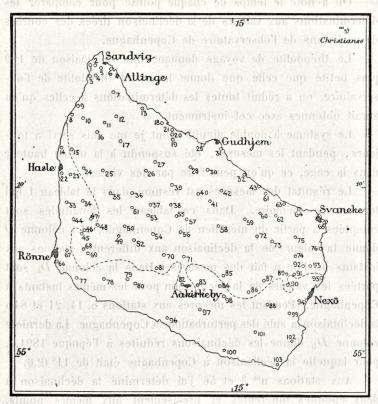


Fig. 1. Carte des stations où l'on a fait des mesures.

La carte fig. 1 donne une vue d'ensemble sur la situation des stations où l'on s'est installé pour faire des observations. La position précise des stations est marquée sur une carte de l'état-major que possède l'Institut météorologique de Copenhague. Les numéros vont dans le sens des latitudes décroissantes et des longitudes croissantes, de sorte qu'on commence par les

stations qui sont le plus au nord en allant de l'ouest à l'est. On voit par le tableau que, dans chaque série correspondant à peu près aux mêmes latitudes, les stations qui sont le plus à l'ouest ont la déclinaison la plus petite, tandis qu'on trouve les plus grandes déclinaisons dans les parties orientales de l'île.

La carte fig. 2 représente pour l'époque 1891.5 les isanomales de la déclinaison et les isogones telles que l'allure de ces lignes aurait été si le champ magnétique n'était pas troublé par des forces irrégulières 1). Pour les diverses stations les écarts des valeurs vraies de la déclinaison par rapport aux valeurs normales sont répartis d'une manière si irrégulière qu'on n'a pu tracer les isanomales que pour des degrés entiers. C'est surtout près des côtes que les anomalies sont grandes, ce qui s'explique par la différence de l'action du sol et de celle de la mer sur l'aiguille aimantée.

La plus petite déclinaison est mesurée à la station 10 près de la côte ouest dans la partie nord de l'île. Sa valeur est de 5° 59′ pour l'époque 1891.5, soit 3° 29′ au-dessous de la valeur qu'on a adoptée comme normale pour ce point. Dans la partie située au milieu de la côte ouest la déclinaison est trop petite de plus de 2°. Les déclinaisons ont leurs valeurs normales le long d'une ligne très sinueuse traversant l'île d'un point voisin de la pointe nord jusqu'à un point situé sur la côte est dans la partie la plus au sud. A l'est de cette ligne l'aiguille dévie plus vers l'ouest qu'elle ne l'aurait fait si le champ magnétique de l'île n'était pas troublé. La déclinaison la plus grande, mesurée à la station 32, est de 11° 45′, soit de 2° 28′ plus grande que la valeur normale.

Le tableau ci-dessous donne les écarts des valeurs vraies par rapport aux valeurs normales. Le signe + indique que les vraies valeurs sont plus grandes que les valeurs normales.

¹⁾ Pour la détermination des lignes isomagnétiques du champ magnétique terrestre, voir le chapitre sur la détermination des forces perturbatrices.

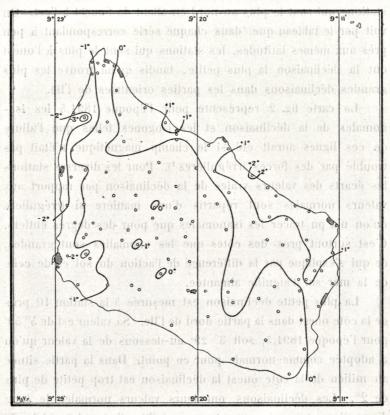


Fig. 2. Isanomales de la déclinaison et isogones terrestres.

Écarts de la déclinaison vraie par rapport à la déclinaison terrestre.

1200					
Nos	D_0-D_n	Nos	D_0-D_n	Nos	D_0-D_n
1a.,	. — 1 3.2	7,	$+0^{\circ}12.9$	16	$0^{\circ}42.1$
			— 1 46.4		
			137.4		
1d	. — 0 59.0	10	3 28.5	19	-0 3.0
			0 46.1		
			+0 10.7		
4	-045.7	13	+0 52.1	22	-2 22.5
5	012.2	14	= 2 23.9	23	-054.6
6	-0 9.4	15	-1 4.4	24	1 37.8

Nos $D_0 - D_n$ Nos $D_0 - D_n$ Nos $D_0 - D_n$
$25 \dots -0^{\circ} 29.8 53 \dots -0^{\circ} 29.9 77 \dots -1^{\circ} 31.9$
$26 \ldots 0 23.6 54 \ldots 0 28.7 78 \ldots 0 59.5$
$27 \dots -0 29.0 55 \dots -0 1.0 79 \dots -0 6.5$
$28 \ldots 0 8.4 56 \ldots 0 21.8 80 \ldots 0 21.1$
$29 \dots + 0 \ 48.2 \ \ 57 \dots - 0 \ \ 7.7 \ \ 81 \dots + 0 \ \ 4.4$
$30 \dots + 1 0.5 58 \dots - 0 28.7 82 \dots - 0 15.8$
$31 \ldots + 0 \ 49.6 \ \ 59 \ldots + 0 \ 45.7 \ \ 83 \ldots - 0 \ 16.5$
$32 \dots + 2 \ 28.2 \ 60 \dots + 1 \ 6.0 \ 84 a \dots + 0 \ 41.1$
$33 \dots -2 5.8 61 \dots +1 37.8 84 \dots +0 41.7$
$34 \dots 1 0.8 62 \dots + 0 57.5 85 \dots + 0 26.5$
$35 \dots -0 11.2 63 \dots +1 23.8 86 \dots -0 1.8$
36 — 0 51.4 64 a $+$ 0 54.8 87 — 0 13.7
37 + 0 8.2 64b + 0 54.2 88 0 11.5
38 -0 15.4 $64 c$ $$ $+$ 0 7.6 89 $$ $+$ 0 22.5
$39 \dots -0 45.8 64 d \dots +0 23.1 90 \dots -0 6.8$
$40 \ldots -0 32.4 \mid 65 \ldots +0 47.5 \mid 91 \ldots +1 47.0$
$41 \dots -0 44.0 66 a \dots -1 45.5 92 \dots +1 50.5$
$42 \dots + 0 \ 45.1 \ \ 66 \ b \dots - 1 \ 35.5 \ \ 93 \dots + 0 \ 17.9$
$43 \dots + 1 6.2 67 \dots - 1 36.4 94 \dots + 0 12.1$
$44 \dots -1 34.1 68 \dots -2 9.9 95 \dots +0 33.6$
45
$46 \dots -1 1.6 70 \dots -0 3.6 97 \dots -0 36.7$
$47 \dots -0 7.6 71 \dots -0 44.2 98 \dots +0 21.5$
$48 \dots + 0 16.7 72 \dots + 0 30.8 99 \dots - 0 2.7$
$49 \dots 0 35.1 73 \dots + 0 42.5 100 \dots - 0 28.5$
$50 \dots -0 13,4 74 \dots +0 52.7 101 \dots -0 28.7$
$51 \dots -0 22.7 75 \dots +1 10.1 102 \dots -0 10.1$
52

Mesures de la composante horizontale.

La composante horizontale du champ magnétique de Bornholm a été exclusivement déterminée par des déviations. L'aiguille déviée a toujours été suspendue au niveau de l'aimant déviant, ce qu'on peut faire par des visées. Pendant les voyages de 1891 et de 1892 je me suis servi d'un barreau marqué I qu'on emploie aussi à l'observatoire de Copenhague pour les mesures absolues,

La constante dans la formule pour calculer la composante horizontale par des déviations est déduite de mesures comparatives effectuées au pavillon de l'observatoire consacré aux mesures absolues. Pour le voyage de 1891 les expériences ont donné la formule suivante:

$$\log H = 9.03734 - \log \sin \varphi - 0.000196 (t - 20^{\circ}).$$

Dans cette formule H désigne la valeur de la composante horizontale (unités: centimètre, gramme, seconde) et φ la déviation que le barreau imprime à l'aiguille.

Les déterminations effectuées immédiatement avant le départ et après un voyage de quatre semaines n'ont fait constater aucune altération sensible de la constante. Les moyennes fournies par les deux séries d'expériences ne diffèrent que de 2 unités du cinquième ordre décimal.

En 1892 la constante du même barreau a été déterminée à quatre reprises, savoir en mai et en juillet pour des mesures à Bornholm, en août et en septembre pour des mesures dans le Jutland et dans les principales îles danoises. On a trouvé comme valeur moyenne 9.03710 correspondant à une température de 20°, ce qui ne donne pendant toute une année qu'une perte de 24 unités du cinquième ordre décimal. Les mesures n'ont pas montré de variation sensible de la constante entre la fin de mai et la fin de septembre, les observations de mai donnant 9.03709, celles de septembre 9.03713.

Pour les mesures effectuées en 1893 et 1894 je me suis servi d'un autre barreau marqué III. Les expériences ont donné pour le voyage de 1893 la formule suivante:

$$\log H = 8.99825 - \log \sin \varphi - 0.000184 (t - 20^{\circ}).$$

Les moyennes fournies par les expériences effectuées avant et après le voyage ne diffèrent que de 2 unités du cinquième ordre décimal. Pour le voyage de 1894 les déterminations du 12 septembre donnent une valeur de 8.99788 correspondant à une température de 20°. Le 25 octobre on a trouvé une valeur de 8.99771. Les différences extrêmes des valeurs de la première série d'expériences étant de 9 unités et pour la seconde série de 10 unités, la constante a été sensiblement altérée dans l'intervalle des deux dates. On a donc fait varier la constante proportionnellement au temps.

Toutes les fois qu'on l'a pu, on a placé le théodolite de manière qu'on était à l'ombre pour les expériences relatives à la composante horizontale sans pourtant déplacer l'instrument après les observations du soleil. Les mesures des trois éléments ont toujours été faites précisément au même point. Lorsque les circonstances ne permettaient pas de chercher l'ombrage des arbres, on s'est servi d'une espèce de parasol dans la construction duquel il n'entrait aucune pièce de fer. L'étoffe de canavas doublé de ce parasol a une diamètre de 2^m; la canne de bambou est d'une hauteur de 2^{m1}/₂. On fixe l'appareil dans une position convenable par des galhaubans.

A chaque station j'ai effectué deux séries de mesures. Pour éliminer l'influence de la variation de la déclinaison, les lectures de la deuxième série d'expériences ont été faites en ordre inverse de celles de la première.

Ne possédant pas pendant le voyage de 1891 de boussole d'inclinaison, j'ai visité de nouveau en 1892 les stations où j'avais fait des mesures en 1891. J'ai ainsi eu l'occasion de refaire précisément aux mêmes points quelques déterminations de la composante horizontale. De telles mesures ont été faites aux stations 3, 21 et 66 b. Pour la première de ces stations les expériences ont été exécutées en 1891 les 9 et 10 juillet, en 1892 le 8 juin. A la station 21 on a effectué les mesures le 16 juillet 1891 et le 20 juin 1892. On a encore fait des expériences à la station 66 b près de Rönne les 29 juin et 8 juillet 1891. On trouvera le résultat de ces mesures dans le tableau II qui termine ce mémoire.

Dans ce tableau la colonne H contient les valeurs de la composante horizontale aux instants où l'on a effectué des mesures. Dans la colonne H_k sont portées pour ces mêmes instants les valeurs de la composante horizontale à l'observatoire magnétique de Copenhague. La colonne H_0 donne pour les diverses stations les valeurs réduites à l'époque 1891.5 pour laquelle la composante horizontale à Copenhague avait une valeur de 0.17322.

Les observations ont été effectuées aux mêmes dates que celles pour la déclinaison en exceptant celles qui ont été refaites aux stations 3, 21 et 66 b, et dont les dates sont indiquées plus haut.

La composante horizontale a été perturbée à Copenhague pendant les mesures aux stations 14, 21 (1891), 24 et 26.

Le tableau ci-dessous donne la différence entre les valeurs vraies de la composante horizontale (H_0) et celles qu'aurait eues cet élément magnétique dans un champ dégagé de toute anomalie (H_n) . On voit que ces différences sont en général négatives, surtout dans la moitié nord de l'île. Ce n'est que dans la moitié sud qu'on trouve en quelques points des valeurs de la composante horizontale surpassant celles d'un champ non troublé. La répartition irrégulière de ces différences ne permet pas de tracer des courbes représentant les isanomales de la composante horizontale. Les différences entre les forces magnétiques vraies et les forces magnétiques terrestres ou normales ne peuvent pas non plus servir à la mesure des forces qui produisent des perturbations dans le champ terrestre. Nous reviendrons plus loin sur ce sujet.

Écarts de la composante horizontale *vrai*e par rapport à la composante horizontale *terrestre* (en unités du cinquième ordre décimal).

Nos	H_0-H_n	Nos	H_0-H_n	Nos	H_0-H_n
1a	504	2	419	6 .	400
			478		
			455		
			—400		

Nos	H_0-H_n	Nos	H_0 — H_n	Nos	H_0-H_n
10	611	43	-304	73	+ 161
1178. 391).	495	44 91 . 2010	142	74	" Pour rédui
12	395	45	1162	7.5	ol. 40000 321
139900.3	462	046 Tio ST.	52	76	288
14	661	47m. sh. as	-103	1177	isle ne no (311) 51
15	645	48,,,,,,	· 19m1070	78	188 ± 88
16 1, 100	384	49900 .91 .		79	
17	—, a	50 по с ког	+ 59	80	1.0011-01-075
18 moitos	-650	51/1. A .//o	. 94 94	81	50 mil - 1 mil - 50
19		52 maido.	+ 55	82	
2011. 5000	eren determ	53mgarlera	53	83	124
21	-651	54	. + 21	84	a + 255
22 1	-203	55p . , oldis	63	85	
23	+ 88	56	. 36	86	19.7
24	— 283	570 36 00	. 103	87	iop · oo · inavina
	166	58	+ 24	88	65
	—152			500 TABLES TO	258
	421				" Les mesur
	841				
29	373			Office Control	16.5 616
	-403			District Control	48
	-362				36
	+52	64 b	. — 210	95	-1.182461 - 106
	146				140
34	156	64 d	. — 264		animage it 35
35	—103	65	-452	98	
		66 b	. 39	99	+110
37	+ 65	67 1,7511,76	+172	100	+ 28
	a . a o TT a 4.7			101	137
	477	69		CONTRACT.	·
	-339			103	+ 208
	-290	71		donn	La colonne $I_{\mathcal{E}}$
42	646	72 20000	+ 68	dinis	où l'on a effe

Mesures de l'inclinaison.

Pour réduire les observations de l'inclinaison faites avec l'instrument de voyage à celles qu'on aurait obtenues avec la boussole d'inclinaison de l'observatoire magnétique de Copenhague, on a fait plusieurs séries de mesures comparatives.

Je me bornerai à donner les corrections qu'on a trouvées pour l'aiguille marquée II dont je me suis toujours servi et dont les indications ont été assez concordantes.

Pour le voyage de 1892 on a trouvé une correction de $-0^{\circ}.02$ pour la réduction des observations à celles qu'aurait fournies l'instrument qui à Copenhague sert à déterminer l'inclinaison magnétique.

L'axe de rotation de l'aiguille, qui s'était un peu altéré pendant l'hiver de 1892—93, a été renouvelé au printemps suivant, ce qui a donné pour le voyage de 1893 une correction de —0°.15. Cette correction est restée invariable pour les voyages de 1894 et de 1895.

Les mesures ont été faites de la manière ordinaire; les pôles ont toujours été renversés. Pour chaque position l'aiguille a été enlevée trois fois de ses supports pour s'assurer de la concordance des lectures. Quand, pour une certaine position, les lectures n'étaient pas assez concordantes, on a retiré l'aiguille pour essuyer l'axe et les supports. Ce n'est que dans les jours d'humidité que ce procédé n'a pas réussi à faire disparaître les divergences; dans ce cas on n'a pas utilisé les mesures.

Le résultat des observations est donné dans le tableau III. Dans ce tableau la colonne I contient les valeurs de l'inclinaison telles qu'elles ont été trouvées par les mesures et réduites aux indications de la boussole avec laquelle l'inclinaison est mesurée à l'observatoire magnétique de Copenhague. La colonne I_k donne l'inclinaison à Copenhague aux instants où l'on a effectué les observations aux diverses stations.

Dans la colonne $I_{\rm o}$ sont portées les valeurs de l'inclinaison aux diverses stations pour l'époque 1891.5 où l'inclinaison à Copenhague avait une valeur de 68° 50′.0.

Le tableau suivant donne les écarts des inclinaisons vraies (I_0) par rapport aux inclinaisons terrestres (I_n) .

Nos	I_0-I_n	Nos I_0	$-I_n$	Nos	I_0-I_n
4	0°38.6		21.8	76	o° 27.8
5	» 40.2	41 »	46.6	78	» 26.6
6	» 32.6	43 1	12.8	79	» 22.8
7	» 37.9	44 0	27.3	80	» 3.6
8qmsdo .	1 11.9	45 1	38.6	81	» 27.8
9	0 41.6	46 0	37.9	82	» 32.6
10	1 6.1	47 »		83	» 51.0
12	0 38.4	48	17.5	84 a —	
13	» 40.1	49 »	8.5	85	
14	» 53.1	50 »	7.9	86	» 3.0
18	» 49.0	51 »	8.0	88	
21	» 50.2	53 »	12.6	89	
22	» 25.3	55 »		91	
23	» 7.9	56	23.5	92	» 13.1
25	» 33.7	60 »	1.3	93	» 41.8
27	» 43.7	61 »	29.6	95	
28	1 22.8	62 »	29.6	96	» 17.7
29	0 39.6	63 »	15.7	97	» 14.6
32	» 26.8	65	42.9	98	» 21.4
33	» 25.4	66b»	12.7	99	» 13.4
34	» 26.9	67	6.7	100	» 19.2
35	» 21.8	69 · · · · — »	26.1	101	» 30.3
36 –	- » 1.8	70 »	18.0	102	» 30.3
37	» 5.6	72 »	22.5	103	0.4
38	» 36.2	73	0.9		
39	1 1.3	75 »	13.2		
	cillien con				

On voit que la valeur de l'inclinaison dans l'île de Bornholm surpasse en général celle qui correspond à un champ non troublé, conséquence naturelle de la valeur trop petite en général de la composante horizontale. Ce n'est qu'en des stations où la valeur de la composante horizontale vraie surpasse celle de la composante horizontale terrestre que l'inclinaison a été trop petite. La plus petite valeur de l'inclinaison est mesurée à la station 69 où la composante horizontale a une valeur extraordinairement grande.

Détermination des forces qui troublent le champ terrestre.

Les forces qui agissent dans le champ magnétique de l'île de Bornholm étant la résultante des forces terrestres qui agiraient si le champ était dégagé des anomalies magnétiques, et de celles qui troublent le champ, on peut déterminer par le calcul ces dernières si l'on connaît les éléments magnétiques qui constitueraient un champ exempt de toute anomalie.

J'entends par champ terrestre ou normal un champ dans lequel les éléments magnétiques sont distribués conformément à ce qu'exige la théorie de Gauss.

On a donc déterminé les valeurs des éléments magnétiques du champ terrestre de Bornholm à l'aide des cartes magnétiques de M. Neumayer. Des mesures assez nombreuses que j'ai effectuées en Jutland et dans les principales îles danoises permettent de déterminer les valeurs correspondant aux lignes isomagnétiques qui sur les cartes sont tracées à travers le Danemark.

Pour la valeur de la déclinaison terrestre, la carte donne une différence de 1° 40' à peu près entre les déclinaisons pour les isogones qui traversent Copenhague et le milieu de Bornholm. La déclinaison de Copenhague pour l'époque 1891.5 étant de 11° 0'.6, la déclinaison terrestre au milieu de Bornholm sera donc à la même époque 9° 20' à peu près. Si l'on calcule la déclinaison par la variation moyenne que subit cet élément en Danemark en allant de l'ouest à l'est, les mesures effectuées à Esbjerg (près du point le plus à l'ouest du Jutland), à Marstal (île d'Ærö, au sud de la Fionie) et près de l'extrémité est de l'île de Möen, assignent au milieu de l'île de Bornholm une déclinaison de 9° 20'.2.

On a donc adopté pour l'époque 1891.5 osi ougil ad

la composante horizontale 00200e les stations 18 et 63, voir

comme valeur de la déclinaison terrestre pour l'isogone traversant le milieu de Bornholm.

La variation normale de la déclinaison suivant la longitude donne, pour cette même époque, au point le plus à l'ouest de l'île une déclinaison de 9° 29' et au point le plus à l'est une déclinaison de 9° 11'.

Pour déterminer la valeur de la composante horizontale terrestre, on s'est servi des mesures qui ont été effectuées au nord et au sud de la ligne d'égale composante horizontale qui sur la carte de M. Neumayer traverse le milieu du Danemark. Le résultat de ces mesures donne, pour les points qui sont traversés par cette ligne, une valeur moyenne de la composante horizontale égale à 0.16991. L'époque à laquelle est réduite cette valeur est la même que pour la déclinaison.

La variation moyenne de la composante horizontale en Danemark suivant la latitude donne une valeur de 0.18013 pour la composante correspondant à la ligne d'égale composante horizontale qui sur la carte est tracée un peu au sud du Danemark.

Les valeurs que nous avons déduites des expériences concordent bien avec celles que donne la carte, qui assigne à ces lignes pour l'époque 1885.0 des valeurs de 0.17 et 0.18.

J'ai donc adopté les valeurs qu'on a trouvées par les mesures en Danemark, comme valeurs de la composante horizontale terrestre correspondant pour l'époque 1891.5 aux lignes isomagnétiques susmentionnées.

La position de l'île de Bornholm entre ces deux lignes d'égale composante horizontale donne pour le milieu de l'île une valeur de la composante horizontale terrestre de

ab alfill ab mailing up in 0.17672 (C. G. S.) allif ab has animonizable

réduite à l'époque 1891.5. me de de mostignille de montre de l'époque 1891.5.

La ligne isomagnétique qui correspond à cette valeur de la composante horizontale traverse les stations 48 et 63 (voir la carte fig. 1).

Pour déterminer la valeur de l'inclinaison terrestre, on a sur une carte du Danemark, par les points où l'on a fait des mesures de l'inclinaison, tracé des lignes parallèles aux lignes isoclines de la carte de M. Neumayer. Les stations où l'on a effectué des observations de l'inclinaison sont réparties assez régulièrement; des mesures ont été faites au nord du Jutland, dans les parties centrales et aux points sud du pays. La variation de l'inclinaison en Danemark assigne par cette méthode pour le milieu de l'île de Bornholm une inclinaison de

the resultant decree meanes \$10086, pour les points qui sent

réduite à l'époque 1891.5. Pour les points nord et sud on a adopté 68° 22'.5 et 68° 7'.5 respectivement.

Nous pouvons donc déterminer les éléments du champ magnétique terrestre pour chaque station où l'on a fait des mesures.

Pour déterminer la valeur des forces qui troublent le champ, nous décomposerons les composantes horizontales des forces vraies et des forces terrestres en deux forces rectangulaires: l'une X suivant le méridien géographique comptée positive vers le nord, et l'autre Y suivant la direction estouest comptée positive vers l'ouest. Désignons par X_0 et Y_0 les forces vraies, par X_n et Y_n les forces terrestres, toutes deux réduites à la même époque (1891.5); les différences $X_0 - X_n$ et $Y_0 - Y_n$ représentent les forces qui produisent les

anomalies magnétiques, décomposées suivant le méridien géographique et perpendiculairement à cette ligne. Désignons encore par Z_0 la composante verticale vraie et par Z_n la composante verticale terrestre; $Z_0 - Z_n$ est la valeur de la force verticale qui trouble le champ terrestre.

Le tableau IV donne la valeur des forces vraies et des forces terrestres, décomposées suivant les directions sudnord et est-ouest, ainsi que les forces totales vraies et terrestres.

Les valeurs des forces perturbatrices sont portées au tableau V. On voit que les $Y_0 - Y_n$ sont négatives pour les stations à l'ouest de l'île et positives pour les stations à l'est, ce qui explique la répartition anomale de la déclinaison. Les $X_0 - X_n$ sont en général négatives, ce qui a pour conséquence que les valeurs vraies de l'inclinaison surpassent en général les valeurs terrestres. L'inclinaison a sa plus grande valeur, savoir 69° 53', surpassant de 1° 39' la valeur normale, à la station 45. C'est en ce même point qu'on trouve la plus petite valeur de X_0 , savoir 0.16296, qui est de 0.01139 plus petite que la valeur normale.

Des valeurs de l'inclinaison surpassant la valeur normale ne se trouvent qu'en des points où les X_0 — X_n sont positives. L'inclinaison a sa plus petite valeur, savoir 67° 47° , qui est trop petite de 26° , à la station 69° , où la valeur de X_0 — X_n est de + 0,00602.

Dans le tableau V la colonne $h = \sqrt{(X_0 - X_n)^2 + (Y_0 - Y_n)^2}$ donne les composantes horizontales des forces perturbatrices. Les azimuts de ces forces, comptés du nord vers l'ouest, sont portés dans la colonne δ .

Dans les colonnes $t = \sqrt{(X_0 - X_n)^2 + (Y_0 - Y_n)^2 + (Z_0 - Z_n)^2}$ et i on trouve les valeurs des forces perturbatrices totales et celles de l'inclinaison de ces mêmes forces sur l'horizon.

La valeur moyenne de la composante horizontale de la force perturbatrice est de 0.0039 (C. G. S.), soit $0.022~H_n$. Aux

stations 8, 10 et 45, h s'élève à des valeurs comprises entre 0.0106 et 0.0121 (C. G. S.).

La valeur moyenne de Z_0 — Z_n est de 0.0063, savoir 0.014 Z_n . En douze des 75 stations où l'on a effectué des mesures de la composante verticale, la valeur de Z_0 — Z_n s'élève à 0.0100 et au delà. La plus grande valeur de la composante verticale des

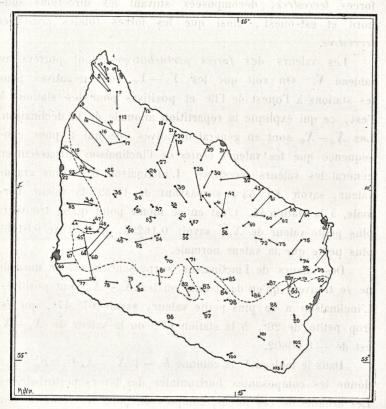


Fig. 3. Carte représentant la valeur et la direction des composantes horizontales de la force perturbatrice.

forces perturbatrices, savoir 0.0207, a été mesurée à la station 43. On n'a pas constaté de valeur négative pour Z_0-Z_n .

La force perturbatrice totale a une valeur moyenne de 0.0079, savoir $0.017\sqrt{X_n^2+Y_n^2+Z_n^2}$. En dix-huit stations cette

force s'élève à des valeurs comprises entre 0.0101 et 0.0212. Cette dernière valeur a été mesurée à la station 43.

La carte fig. 3 représente graphiquement la valeur et la direction de la composante horizontale de la force perturbatrice aux différentes stations où l'on a effectué des mesures. Cette carte montre qu'aux points voisins de la mer les forces ont une direction à peu près perpendiculaire à la direction des côtes ouest et nord-est et qu'elles sont toutes dirigées de la mer vers le centre de l'île. C'est aussi près de ces côtes que la valeur de ces forces est la plus grande. Au centre et dans les parties sud la composante horizontale des forces perturbatrices n'a en général qu'une valeur faible.

Sur les côtes ouest et nord-est l'inclinaison de la force perturbatrice totale sur l'horizon est en général relativement petite. Ainsi pour la station 18 cette force n'est inclinée sur l'horizon que de 16°. Aux stations 9, 14 et 21 l'angle que fait ladite force avec l'horizon ne mesure que 19°. Au centre et au sud où la composante horizontale de la force perturbatrice est faible, la direction de la force perturbatrice totale s'approche de la verticale. Ainsi aux stations 37, 38, 50, 55, 70, 88 et 102 la valeur movenne de l'angle que fait cette force avec l'horizon s'élève à 83°. Aux stations 38 et 70 la force totale ne fait qu'un angle de 2° avec la verticale. Il y a donc lieu de croire qu'il y a des points où la direction de la force perturbatrice totale coïncide avec la verticale. Si on donne le nom de pôle magnétique à un point où l'inclinaison de l'aiguille est de 90°, la surface de l'île de Bornholm doit donc, par rapport au champ qui est produit par l'action magnétique de l'île, comprendre des pôles magnétiques de même nom que le pôle magnétique boréal du globe.

M. le capitaine de frégate Hammer a, sous les auspices du Dépôt royal des cartes de la marine, effectué un grand nombre de déterminations de la déclinaison en mer aux environs de Bornholm. Ces mesures montrent que sur la mer la

déclinaison va en décroissant quand on s'approche de la côte ouest, près de laquelle elle est anomalement petite, ayant à peu près la même valeur que sur le littoral. Sur la mer à l'est de l'île la déclinaison est anomalement grande près de la côte pour décroître assez rapidement en allant vers l'est.

Malgré l'irrégularité de la marche des isogones en mer, les observations de M. Hammer montrent que l'action magnétique de l'île de Bornholm est prédominante en mer jusqu'à environ 15 km. des côtes.

Près de la côte sud-ouest de l'île et dans la partie sud de la côte est la composante horizontale de la force perturbatrice n'est pas en général dirigée perpendiculairement à la côte. Dans ces parties comme au centre de l'île la valeur de cette force est relativement petite. Cela s'explique par le fait qu'au sud-ouest de Bornholm et près de la partie sud de la côte est, la profondeur de la mer est relativement faible par rapport aux profondeurs tout près des côtes ouest et nord-est (voir la carte fig. 4).

On explique la formation du grand banc qui sous le nom de Rönne Banke s'étend au sud-ouest de Bornholm par la précipitation dans la mer des parties du sol de cette île entraînées par les glaciers qui durant la période glaciaire ont cheminé à travers l'île dans la direction du nord-est au sud-ouest.

Les observations en mer de M. Hammer montrent qu'à l'ouest de ce banc la déclinaison est trop petite et à l'est trop grande par rapport à la valeur normale. Comme sur la terre ferme, la déclinaison va aussi en croissant quand on traverse le banc dans la direction de l'ouest à l'est. Le grand banc au sudouest de Bornholm agit donc sur l'aiguille aimantée de la même manière quoique avec moins de force que la terre ferme.

On a encore fait quelques mesures pour constater l'action magnétique de la diabase.

Ainsi on a effectué une série d'observations de part et d'autre d'un filon de diabase qui traverse le rivage de Listed (station 64) pour se perdre dans la mer. Ce filon se détache très distinctement des autres parties du sol du rivage. La direction est sensiblement perpendiculaire à la côte, qui en ce lieu va de l'ouest-nord-ouest à l'est-sud-est. On a fait en ce

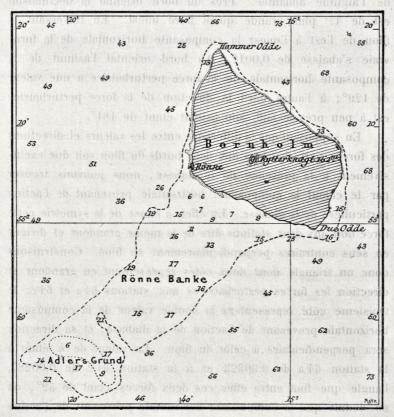


Fig. 4. Carte représentant les profondeurs en mètres des eaux qui entourent l'île de Bornholm.

lieu quatre séries de mesures sur la déclinaison et la composante horizontale. Dans les tableaux I, II, IV et V les chiffres correspondant aux stations 64 a, 64 b, 64 c et 64 d donnent le résultat de ces mesures. La station 64 a est située immédiatement au bord oriental du filon, la station 64 b à 15^m à l'est-sud-est de 64 a. La station 64 c se trouve immédiatement au bord

ouest du filon, la distance de la station 64 d à 64 c est de 15^m. Les quatre stations sont toutes situées sur une ligne perpendiculaire à la direction du filon.

Les tableaux montrent que la diabase attire le pôle nord de l'aiguille aimantée. Près du bord oriental la déclinaison est de 47' plus grande qu'au bord ouest. En traversant le filon de l'est à l'ouest la composante horizontale de la force vraie s'abaisse de 0.0012. Au bord oriental l'azimut de la composante horizontale de la force perturbatrice a une valeur de 129°; à l'autre bord la direction de la force perturbatrice est à peu près le sud, son azimut étant de 181°.

En supposant que la différence entre les valeurs et directions des forces perturbatrices aux deux bords du filon soit due exclusivement à la présence de la diabase, nous pouvons trouver par le calcul la composante horizontale provenant de l'action particulière de la diabase. En effet, à cause de la symétrie cette force doit aux deux stations être de la même grandeur et dirigée en sens contraires perpendiculairement au filon. Construisons donc un triangle dont deux côtés représentent en grandeur et direction les forces perturbatrices aux stations 64 a et 64 c; le troisième côté représentera la double valeur de la composante horizontale provenant de l'action de la diabase, et sa direction sera perpendiculaire à celle du filon. La valeur de h étant à la station 64 a de 0.00323 et à la station 64 c de 0.00287, l'angle que font entre elles ces deux forces étant de 52°, on en déduit que la composante horizontale provenant de l'action de la diabase a au bord du filon une valeur de 0.00135. Au bord oriental l'azimut de la force est d'après le calcul de 72°, et d'après la carte géologique de Bornholm dressée par M. Johnstrup, une ligne perpendiculaire au filon de diabase de Listed aurait un azimut de 76°. On ne peut pas s'attendre à une concordance plus grande entre les valeurs calculées et les valeurs observées; nous devons encore ajouter que la carte ne prétend

pas à une grande précision quant à la détermination de la direction des filons de diabase.

On a de même fait des observations pour constater l'influence d'un filon de diabase près de la pointe nord de l'île (voir les tableaux sur les mesures aux stations 1a, 1b, 1c et 1d). Aux points où l'on a effectué les observations la direction du filon va de l'est-sud-est à l'ouest-nord-ouest. Au bord sud la composante horizontale est de 0.0010 plus grande et la déclinaison de 8' plus petite qu'au bord nord. En faisant la même hypothèse que pour le calcul de l'action magnétique du filon de Listed, on trouve pour la composante horizontale provenant de l'action particulière de la diabase une valeur de 0.00058 au bord du filon aux stations 1 b et 1 c. D'après le calcul l'azimut de cette force aurait, au bord nord du filon, une valeur de 167° (compté du nord vers l'ouest), tandis que d'après la carte l'azimut d'une ligne perpendiculaire au filon est de 158°. La différence est trop grande pour que notre supposition puisse être juste. La carte montre aussi que le filon s'infléchit en émettant plusieurs branches un peu à l'est des stations, tandis que d'après la carte le filon de Listed est dirigé exactement en ligne droite.

Tableau I. Valeurs de la déclinaison.

Nos des stations	Dates	Description des stations				D_k	
- 82	b noited	tes observations la dia	Butsell	9 6 1	G 1 110.	alming	792
1 a	1892 7/6	Hammeren. Station à)	01.4	ea-bu	(-1HO)	95 80	uoli)
	et la dé Exisont 1	12 ^m au N. du bord d'un filon de diabase près d'une vieille maison	55°17.2	2 10.9	8 29.0	11° 1′.2	8 28.4
1 b	» 9/6	St. au bord nord du filon	91-71	og-sur	8 24.2	11 1.5	8 23.3
1 c	" 7/6	St. au bord sud du filon	mion e	V15 11-11	8 13.2	10 58.0	8 15.8
1 d	» ⁹ / ₆	St. à 18 ^m plus au S	collere	ideal in	8 23.7	10 56.8	8 27.5
2	u 7/6	St. à l'E. du phare tout près du chemin qui y mène	55 17.2	2 11.2	8 41.1	10 55.4	8 46.3
3	1890 2/9	St. au coin sud-ouest du jardin de l'hôtel Blanch	55 16.5	2 10.8	8 23.4	11 7.1	
- (1891 9/7	Même point	mi A	u d rii s b	8 18.1	11 0.5	8 18.1
4	1892 4/6	St. près du coin sud-est) du jardin de l'hôtel Blanch	55 16.6	211.2	8 38.6	10 58.6	8 40.6
5	» 4/6	Au pied de Langbjerg, près du bord est du lac de Hammeren	55 17.0	2 11.7	9 6.5	10 53.4	9 13.7
6	1891 11/7	St. près de la route entre Sandvig et Allinge	55 17.0	2 12.9	9 15.4	11. 0.3	9 15.7
7	1893 19/7	Bois à Lille Haldegaard	55 15.5	2 13.1	9 22.6	10 45.3	9 37.9
8	1891 12/7	Près de Vang	55 14.7	2 9.8	7 40.8	11 0.1	7 41.3
9	1892 11/6	Bois près de Findalgaard	55 15.2	2 10.2	7 51.5	11 2.0	7 50.1
10	» 10/ ₆	Petit bois près de Krak- gaard	55 14.5	2 10.4	5 59.1	11 1.2	5 58.5
11	1891 12/7	St. dans un bois près de Magaard	55 14.2	2 12.6	8 43.1	11 4.3	8 39.4
12	1892 8/6	A l'E. de l'église St. Ole, à l'endroit où la route se bifurque vers Rö	55 14.4	2 13.3	9 36.1	11 1.2	9 35.5
13	1891 12/7	Lisière près du village Tejn	55 14.6	2 15.3	10 19.2	11 4.5	10 15.3
14	1892 16/2	Bois à Kæmpeaa près d'Ysterby	55 12.4	2 8.3	7 3.9	11 1.3	7 4.6
15	1893 21/7	Entre l'église de Ruth et la ville de Hasle, à l'en- droit où la route se bi- furque vers Ysterby	55 12.3	2 9.6	8 14.3	10 51.5	8 23.4

Nos des stations	Dates	Description des stations	φ	λ	D	D_k	D_0
16	1893 21/7	A l'E. de l'église de Ruth,	55°13′.2	2 11.5	837,9	10°54.5	8 44.0
17	05 0 0 00	près de la route	kkeenne.	2110	10.00.1	8	181 5
18	» 22/ ₇ » 19/ ₇	Bois à Högegaard	CHAPTOTTICE OF	47130	STREET	10 55.7	10 38.0
19		Bois à Baastedgaard	Control of the Control	10000	Contract Contract	10 54.4	10 25.9
5000	1891 18/7	Près de l'église de Rö.	99 12.6	2 19.1	921.5	11 3.8	9 18.3
20	1892 20/6	Entre Helligdomsgaarden et Rö	55 13.1	2 19.1	9 27.3	10 56.0	9 31.9
21	1891 17/7	Bois près de Helligdoms-	55 13.3	2 19.1	10 29.0	11 3.7	10 25.9
22	» 16/ ₇	Près de Hasle dans un bois au S. de la ville	55 10.5	2 7.9	7 5.2	10 59.8	7 6.0
23	1892 17/6	Bois près de la pierre runique à l'E. de Hasle)	55 10.5	2 9.5	8 31.6	10 1.0	8 31.2
24	1891 17/6	Lisière près de Pilegaard	55 10.8	2 10.5	7 52.9	11 4.3	7 49.2
25	1892 17/6	St. près de la route, à l'ouest de l'église de Klemens	55 10.7	2 12.6	8 56.9	11 1.3	8 56.2
26	1891 18/7	Bois près de Slipsgaard	55 10.8	2 16.3	8 59.0	11 0.2	8 59.4
27	39 B	Pointe N.W. du plantage de Rö	55 11.6	2 17.2	8 52.8	11 .0.0*)	8 53.4
28	1894 23/9	St. dans la partie nord- est du plantage de Rö près de Sortebjerg	55 11.0	2 20.9	8 54.7	10 43.7	9 11.7
29	n 21/9	Lisière près de Bobbe-	55 12.3	2 22.3	9 49.8	10 42.6	10 7.8
30	1893 17/7	Près du moulin Solbakke	55 10.7	2 22.8	10 9.1	10 49.2	10 20.5
31	1891 —	Près de Melsted	55 12.1	2 24.1	10 10.5	11 3.5*)	10 7.6
32	1894 24/9	Près de Saltuna	55 10.6	2 26.7	11 29.3	10 45.2	11 44.7
33	1892 16/6	Dans un bois près de Sortehat	55 9.2	2 8.5	7 18.8	10 57.2	7 22.2
34	1893 30/6	St. au N.W. de Ny Kirke	55 9.2	2 10.4	8 12.9	10 47.3	8 26.2
35	1894 14/9	Près de Mæby	55 9.8	2 13.0	8 55.8	10 42.2	9 14.2
36	a 16/9	Près de Boesgaard	55 9.7	2 15.1	8 12.8	10 41.1	8 32.3
37	1893 28/6	Près de Pibergaard	55 9.0	2 16.9	9 23.4	10 53.3	9 30.7
38	» 18/7	Près de Stausdal	55 9.0	2 18.7	8 56.9	10 51.4	9 6.1
39	1894 25/9	A l'entrée sud du plantage de Rö	55 10.1	2 19.1	8 20.1	10 45.2	8 35.5
40	1893 18/7	Près de l'école de Ny Larskirke	55 9.5	2 21.7	8 38.9	10 52.4	8 47.1

^{*)} Valeur interpolée.

Nos des stations	Dates	Dates O Description des stations		Dates Description des stations φ λ		λ	D	D_k	D_0
41	1894 21/9	Bois près de Bøgebjerg .	55 9.1	2.23.1	8 16.8	10°42′.8	8 34.6		
42	1893 17/7	Bois près de Bækkegaard	55 9.7	2 24.3	9 52.6	10 50.0	10 3.2		
43	1891 3/7	Bois près de Randkleve-	55 9.9	2 27.5	10 27.2	11 6.1	10 21,7		
44	1893 6/6	Lisière près de Blykobbe- gaard	55 8.3	2 9.5	7 39.4	10 46.4	7 53.6		
45	1894 15/9	Bois près de Jydegaard.	55 7.3	2 10.3	9 0.2	10 42.7	9 18.1		
46	19 19	Prés de Blykobbeaa	55 7.6	2 10.7	8 3.7	10 38.9	8 25.4		
47	1892 14/6	Jardin près de Ny Kirke	55 8.4	2 11.5	9 17.3	10 59.0	9 18.9		
48	1893 30/6	Lisière au N. d'Elleby- gaard	55 7.7	2 12.3	9 1.5	10 52.8	9 9.3		
49	1894 17/9	Lisière près de la route entre Almindingen et Vester Marie	55 7.0	2 13.9	8 34.9	10 46.0	8 49.5		
50	1893 29/6	Lisière à Kaggegaard, sur la route entre Rønne et Gudhjem	55 7.7	2.14.2	9 4.3	10 54.3	9 10.9		
51	1894 16/9	Lisière près de Skarpe- gaarde	55 8.7	2 15.1	8 45.6	10 44.9	9 1.3		
52	1891 8/7	Bois près de Pindelykke- gaard	55 6.8	2 15.2	7 51.2	10 56.9	7 54.9		
53	1894 25/9	Sur la route entre Rönne et Gudhjem près de Bar- kvist	55 8.3	2 16.6	8 36.4	10 44.1	8 52.9		
54 a	1893 1/7	Sur la route entre Rönne et Svaneke tout près de l'entrée d'Almindingen	55 7.2	2 17.2	8 47.1	10 53.9	8 53.8		
54b	0 0 0	St. à 50 ^m à l'E. de 54 a		Related	8 48.3	10 50.1	8 58.8		
55	1893 3/7	St. dans le plantage Ny- kær près de la route entre Almindingen et Klemens K.	55 8.2	2 19.0	9 7.8	10 49.4	9 19.0		
56	1890 5/9	Près du monument du prince Christian à Al- mindingen	55 7.3	2 20.4	9 7.5	11 7.7	9 0.4		
7.08	1891 1/7	Même point		1000	9 3.2	11 3.9	8 59.9		
57	1894 24/9	A l'entrée nord du plan- tage d'Almindingen	55 8.0	2 20.6	8 54.9	10 42.7	9 12.8		
58	1893 16/7	Près de l'entrée E. d'Al- mindingen, sur la route de Svaneke	55 7.6	2 23.7	8 37.5	10 48.7	8 49.4		

Nos des stations	Dates	Description des stations	olin $oldsymbol{arphi}$ Rs	l Xin	D	D_k	D_{0}
59	1893 16/7	Lisière au sud de l'église Öster Marie	55 8.1	2°26.7	9 49.0	10°47′.4	10° 2′.2
-60	1891 3/7	Lisière sur la route entre Almindingen et Svaneke au sud de Stampegaard	55 8.4	2.28.0	10 27.2	11 6.1	10 21.7
61	1893 9/7	Bois près d'Ypnasted-	55 9.4	2 28.5	10 40.0	10 48.0	10 52.6
62	, 8/7	Bois près de Louisenlund	55 8.2	2 29.8	10 5.4	10 53.6	10 12.4
63	" 9/7	St. entre Listed et Böls-)	reguse	irke	Larel	#[Zh01	
126,6	10.58.6 d	havn près de la pierre commémorative «Hellig Kvinde»	55 9.0	2 30.8	10 30.2	10 53.3	10 37.5
64 a	1892 22/6	A Listed; au bord est)	101.137.11			101 1000	100
1.63	0.04-01	d'un filon de diabase	55 8.7	2 32.3	10 8.4	11 1.4	10 7.6
64 b	n n	A 15 ^m plus à l'est	eh bu	1 Kin 16	10 9.2	11 2.8	10 7.0
64 c	0.11.01	Au bord ouest du filon.	_	-	9 20.2	11 0.4	9 20.4
64 d	10a18.1a	A 15m plus à l'ouest	ng 112 af	br an n	9 32.1	10 56.8	9 35.9
65	1891 1/7	Sapinière à Sandkaas Odde	55 8.0	2 34.4	10 4.7	11 6.7	9 58.6
66 a	1890 1/9	Plantage au sud de la - ville de Rönne, à 160 ^m au N.N.W. de Kastellet	55 5.6	2 7.5	7 49.2	11 6.4	7 43.4
66 b	1891 8/7	St. à 200 ^m au sud de la station à	55 5.5	2 7.5	7 50.2	10 57.4	7 53.4
67	1892 14/7	Bois près de Nygaard à l'est de Rönne	55 6.2	2 9.1	7 49.0	10 58.0	7 51.6
68	0 15/6	St. au sud de l'église Knud	55 6.4	2 10.6	7 7.5	10 51.0	7 17.1
69	1891 8/7	Bois au sud-est de l'église Knud	55 6.1	2 11.2	7 35.3	11 4.3	7 31.6
70	1894 17/9	Près de la lisière ouest du plantage d'Almin- dingen sur la route qui mène à Rytterknægten	55 6.0	2 18.0	9 2.7	10 45.0	9 18.3
71	1893 3/7	Bois au sud de Valens-)	K. 18	Syane	entre		
6.18 (0.21 ((1.6.5°) 1.85°01	gaard près de la route entre Almindingen et Aakirkeby	55 5.3	2 20.2	8 28.0	10 52.3	8 36.3
72	, 10/7	Près d'Albuegaard	55 7.0	2 28.0	9 38.7	10 53.0	9 46.3
73	» 17 » »	Bois à l'E. de Dalslund.	55 6.5	2 29.4	9 50.0	10 53.4	9.57.2
74	" 13/7	Au nord de Kodalshusene	55 5.6	2 32.0	9 52.8	10 33.4	10 5.6
75	, 10/7	Bois au nord de l'église)	ark ab a	stq ets	uliped	1894 19	96
	"17	St. Ibs	55 7.1	2 31.8	10 8.2	10 45.7	10 23.1

Nos des stations	Dates	Description des stations	q	λ	D	D_k	D_{o}
76	1893 6/7	Sur la côte au sud du village Aarsdale	55°6.2	2°34.1	10° 5.7	10°51′.2	10°15′.1
. 77	1891 7/7	Dans une sapinière à Onsbæk	55 4.6	2 9.8	7 57,2	11 2.1	7 55.7
78	1893 26/6	Bois près d'Uglegaard	55 4.6	2 12.7	8 18.6	10 54.7	8 24.5
. 79	0001-00	Bois près de l'église Ny Lars	55 4.6	2 14.6	9 8.3	10 51.4	9 17.5
80	1892 20/6	Bois à l'E. de l'église Ny Larskirke	55 4.3	2 15.8	9 3,9	11 2.2	9 2.3
. 81	1893 7/7	Près du moulin Smörenge	55 5.2	2 17.3	9 19.6	10 53.6	9 26.6
82	1891 30/6	Bois à l'ouest d'Aakirkeby	55 4.2	2 20.5	9 2.5	10 58.3	9 4.8
83	1894 19/9	Lisière à l'E. d'Aakirkeby	55 4.2	2 21.5	8 47.9	10 45.5	9 3.0
84 a	1893 4/7	Bois près de Skovbro	55 4.1	2 23.9	9 49.0	10 49.9	9 59.7
84 b	1894 19/9	A 30 ^m au sud de la	55 4.1	2 23.9	9 39.5	10 41.0	9 59.1
. 85	19/9	Bois au nord de Siggaard	55 4.8	2 24.2	9 32.1	10 48.4	9 44.3
86	1893 5/7	Bois près de Store Halde- gaard	55 3.8	2 27.3	8 57.3	10 43.7	9 14.2
87	, 13,7	A Doevredal près du bord d'une sapinière	55 4.4	2 28.4	8 50.5	10 50.6	9 0.5
88	, 7/ ₇	Près du bord nord du jardin de Store Kruse- gaard	55 3.2	2 29.0	8 49.3	10 46.7	9 3.2
89	1 5/7	Bois près de Pugegaard	55 4.8	2 30.1	9 29.3	10 53.9	9 36.0
90	0,0 13/7	Bois au nord-est de l'église Bodil	55 4.2	2 30.3	9 2.1	10 56.3	9 6.4
91	n 12/7	Bois à l'E. de Klinteby-	55 4.7	2 31.8	10 51.9	10 52.5	11 0.0
92	11/7	Bois près de Rabækgaard	55 5.2	2 32.4	10 57.2	10 54.8	11 3.0
93	1894 20/9	Lisière près de la route entre Svaneke et Nexo	55 5.2	2 33.3	9 15.1	10 45.5	9 30.2
94	1891 4/7	Bois au sud de Nexo'	55 3.3	2 32.8	9 26.4	11 2.5*)	9 24.5
95	1893 6/7	Bois au nord de Nexö	55 4.5	2 34.0	9 37.5	10 53.1	9 45.0
96	1891 6/7	Bois près de Skovhöj	55 2.4	2 18.5	8 39.5	11 5.2	8 34.9
97	5/7	Lisière près de Dalegaard	55 2.7	2 21.7	8 43.0	11 1.0	8 42.6
98	1894 18/9	Sapinière près de Smaa- lyng	55 3.7	2 24.0	9 22.4	10 43.8	9 39.2

^{*)} Valeur interpolée.

Nos des stations	Dates	Dates Description des stations		λ	D	D_k	D_0
99	1894 26/9	Bois à Kannikegaard	55° 2.6	2°30′.8	9° 3.4	10°48.0	9°16.0
100	, 18/9	Au pied d'une colline près de Pilegaard	55 0.9	2 24.0	8 33.9	10 45.3	8 49.2
101	1891 5/7	Lisière à Rispebjerg	55 1.3	2 26.4	8 52.6	11 6.3	8 46.9
102) n () n ()	Bois au sud de l'école de Snogebæk	55 1.0	2 31.1	9 8.7	11 6.1	9 3.2
103	1893 7/7	Près du phare sud de Due Odde	54 59.5	2 29.9	8 59.3	10 54.9	9 5.0

Tableau II.

Nos	H	H_k	H_{0}	No	H	H_k	H_{o}
1a	0.17136	0.17338	0.17120	15	0.17020	0.17338	0.17004
1b	0.17176	0.17340	0.17158	16	0.17295	0.17356	0.17261
1c	0.17300	0.17359	0.17263	17	0.17687	0.17366	0.17643
1d	0.17253	0.17348	0.17227	18	0.17023	0.17350	0.16995
2	0.17240	0.17357	0.17205	19	0.17253	0.17322*)	0.17253
3a	0.17150	0.17328	0.17144)	21a	0.16965	0.17288	0.16999)
3,3	0.17186	0.17356	0.17152	21/3	0.17018	0.17347	0.16993
37	0.17189	0.17358	0.17153	22	0.17434	0.17305	0.17454
4	0.17180	0.17329	0.17173	23	0.17745	0.17322	0.17745
5	0.17230	0.17326	0.17226	24	0.17391	0.17339	0.17374
6	0.17257	0.17353	0.17226	25	0.17519	0.17350	0.17491
7	0.17262	0.17391	0.17193	26	0.17546	0.17361	0.17507
8	0.16760	0.17358	0.16724	27	0.17244	0.17331	0.17235
9	0.17132	0.17342	0.17112	28	0.16865	0.17369	0.16818
10	0.17071	0.17363	0.17030	29	0.17321	0.17364	0.17279
11	0.17174	0.17351	0.17145	30	0.17308	0.17373	0.17257
12	0.17271	0.17347	0.17246	31	0.17329	0.17360*)	0.17291
13	0.17178	0.17323	0.17177	32	0.17744	0.17352	0.17714
14	0.17053	0.17387	0.16988	33	0.17525	0.17327	0.17520

^{*)} Valeur interpolée.

Nos	H	H_k	H_0	No	H della	H_k	H_0
34	0.17496	0.17308	0.17510	67	0.17749	0.17319	0.17752
35	0.17615	0.17376	0.17561	68	0.18265	0.17327	0.18260
36	0.17761	0.17385	0.17698	69	0.18235	0.17355	0.18202
37	0.17783	0.17372	0.17733	70	0.17739	0.17357	0.17704
38	0.17678	0.17379	0.17621	71	0.17302	0.17365	0.17259
39	0.17218	0.17354	0.17186	72	0.17810	0.17383	0.17749
40	0.17377	0.17372	0 17327	73	0.17884	0.17361	0.17845
41	0.17398	0.17342	0.17378	75	0.17391	0.17351	0.17362
42	0.17082	0.17384	0.17020	76	0.17466	0.17390	0.17398
43	0.17415	0.17375	0.17362	77	0.17629	0.17292	0.17659
44	0.17550	0.17343	0.17529	78	0.17643	0.17362	0.17602
45	0.16539	0.17351	0.16513	79	0.17547	0.17378	0.17491
46	0.17650	0.17360	0.17622	80	0.17799	0.17354	0.17767
47	0.17613	0.17367	0.17568	- 81	0.17364	0.17348	0.17338
48	0.17643	0.17362	0.17603	82	0.17464	0.17355	0.17431
49	0.17629	0.17355	0.17596	83	0.17553	0.17306	0.17569
50	0.17727	0.17316	0.17733	84a	0.18008	0.17380	0.17950
51	0.17793	0.17355	0.17760	85	0.17778	0.17411	0.17689
52	0.17759	0.17348	0.17733	86	0.17862	0.17349	0.17835
53	0.17681	0.17385	0.17618	88	0.17703	0.17388	0.17637
54a	0.17715	0.17340	0.17697	89	0.17486	0.17372	0.17436
55	0.17595	0.17308	0.17609	91	0.17498	0.17367	0.17453
56	0.17659	0.17341	0.17640	92	0.17718	0.17367	0.17673
57	0.17615	0.17368	0.17569	93	0.17675	0.17354	0.17643
58	0.17735	0.17356	0.17701	94	0.17760	0.17344	0.17738
59	0.17593	0.17362	0.17553	95	0.17602	0.17333	0.17591
60	0.17847	0.17391	0.17778	96	0.17589	0.17349	0.17562
61	0.17350	0.17402	0.17279	97	0.17766	0.17352	0.17736
62	0.17550	0.17375	0.17497	98	0.17750	0.17378	0.17694
63	0.17624	0.17402	0.17544	99	0.17841	0.17347	0.17816
64 a	0.17599	0.17307	0.17514	100	0.17780	0.17358	0.17744
64b	0.17469	0.17327	0.17464	101	0.17597	0.17346	0.17573
64 c	0.17415	0.17346	0.17391	102	0.17659	0.17324	0.17657
64 d	0.17460	0.17371	0.17411	103	0.17970	0.17362	0.17930
35	0.17255	0.17350	0.17227	TTITL	0 88611	0 87171	.0
66ba	0.17675	0.17357	0.17640)	2888	0 1, 78674	0. 8207	.0
66b B	0.17626	0.17298	0.17650				

Tableau III.

Nos	I	I_k	I_0	Nº	I	I_k	I_0
08671.0 4	68 58.8	68 47.9	69° 0′.3	55	68°39.0	68 51.4	68°37.6
5 0.17855	69 1.2	68 48.8	69 2.2	56	68 36.0	68 48.2	68 37.8
6 0,1188	68 52.8	68 48.2	68 54.6	60	68 16.8	68 50.6	68 16.2
2887TO 7	68 57.6	68 49.1	68 58.5	61	69 4.2	68 47.5	69 6.7
8	69 32.4	68 50.6	69 31.8	62	68 42.0	68 47.6	68 44.4
9	69 1.2	68 49.4	69 1.8	63	68 28.2	68 47.5	68 30.7
10	69 25.2	68 49.4	69 25.8	65	68 55.8	68 48.8	68 57.0
12	68 57.6	68 49.5	68 58.1	66b	68 25.8	68 50.0	68 25.8
13	69 1.8	68 51.8	69 0.0	67	68 19.8	68 49.4	68 20.4
14	69 9.6	68 48.2	69 11.4	69	67 46.8	68 49.4	68 47.4
18	69 7.2	68 49.1	69 8.1	70	68 30.0	68 48.9	68 31.1
21	69 10.8	68 51.8	69 9.0	72	68 34.8	68 48.6	68 36.2
22	68 43.2	68 50.6	68 42.6	73	68 10.8	68 48.6	68 12.2
23	68 25.8	68 50.6	68 25.2	75	68 46.4	68 49.8	68 46.6
25	68 47.4	68 46.4	68 51.0	76	68 38.4	68 47.7	68 40.7
27	68 59.4	68 48.2	69 1.2	78	68 39.0	68 50.0	68 39.0
28	69 39.0	68 49.3	69 39.7	79	68 34.2	68 49.0	68 35.2
29	68 56.4	68 48.9	68 57.5	80	68 7.2	68 48.8	68 8.4
32	68 42.6	68 49.3	68 43.3	81	68 40.2	68 49.8	68 40.4
33	68 41.4	68 50.0	68 41.4	82	68 46.8	68 52.4	68 44.4
34	68 47.4	68 54.5	68 42.9	83	69 3.6	68 50.8	69 2.8
35	68 37.8	68 49.8	68 38.0	84	68 8.4	68 48.8	68 9.6
36	68 13.8	68 49.4	68 14.4	85	68 34.2	68 45.7	68 38.5
37	68 22.8	68 51.6	68 21.2	86	68 13.8	68 49.7	68 14.1
38	68 51.0	68 49.2	68 51.0	88	68 22.8	68 47.9	68 24.9
39	69 16.8	68 49.6	69 17.8	89	68 38.4	68 49.5	68 38.9
40	68 37.8	68 50.0	68 37.8	91	68 49.8	68 48.4	68 51.4
41	69 3.0	68 50.8	69 2.2	92	68 21.6	68 46.3	68 25.3
43	69 27.0	68 48.2	69 28.8	93	68 52.2	68 49.2	68 53.0
44	68 43.2	68 50.8	68 42.4	95	68 33.0	68 49.9	68 33.1
45	69 54.0	68 50.6	69 53.4	96	68 29.4	68 51.2	68 28.2
46	68 53.4	68 50.6	68 52.8	97	68 24.0	68 48.8	68 25.2
47	68 32.4	68 48.2	68 34.2	98	68 30.0	68 47.7	68 32.3
48	68 35.4	68 53.0	68 32.4	99	68 24.0	68 50.5	68 23.5
49	68 23.4	68 50.6	68 22.8	100	68 26.4	68 48.7	68 27.7
50	68 25.2	68 52.5	68 22.7	101	68 37.8	68 48.2	68 39.6
51	68 24.0	68 50.5	68 23.5	102	68 37.2	68 48.2	68 39.0
53	68 26.4	68 48.7	68 27.7	103	68 6.6	68 49.5	68 7.1

Tableau
Valeurs des composantes des forces

Nos	X_0	Y_0	Z_0	X_n
1 a	0.16933	0.02523	H.	0.17385
1 b	0.16975	0.02503	4 50 KM	0.17385
1 c	0.17084	0.02481	8 44 W n	0.17385
1 d	0.17040	0.02534		0.17385
2	0.17004	0.02624	"	0.17385
3	0.16971	0.02474	"	0.17389
4	0.16977	0.02591	0.44760	0.17389
5	0.17004	0.02762	0.44970	0.17388
6	0.17002	0.02773	0.44666	0.17388
7	0.16951	0.02877	0.44732	0.17396
8	0.16574	0.02237	0.44851	0.17400
9	0.16952	0.02333	0.44649	0.17398
10	0.16937	0.01775	0.45379	0.17402
11	0.16950	0.02581	,,	0.17403
12	0.17005	0.02874	0.44905	0.17403
13	0.16902	0.03058	0.44747	0.17403
14	0.16858	0.02093	0.44698	0.17408
15	0.16822	0.02480	,	0.17409
16	0.17061	0.02621	"	0.17406
17	0.17340	0.03256	"	0.17410
18	0.16714	0.03077	0.44587	0.17410
19	0.17026	0.02790	h in	0.17414
20	"	"	"	"
21	0.16715	0.03077	0.44626	0.17413
22	0.17320	0.02156	0.44791	0.17416
23	0.17548	0.02629	0.44865	0.17417
24	0.17212	0.02364	,	0.17417
25	0.17279	0.02717	0.45212	0.17418
26	0.17293	0.02736	"	0.17423
27	0.17028	0.02736	0.44944	0.17420
28	0,16602	0.02687	0.45372	0.17426
29	0.17010	0.03039	0.44916	0.17418
30	0.16977	0.03093	, "	0.17429

IV. vraies et des forces terrestres.

	Y_n	Z_n	$VX_0^2 + Y_0^2 + Z_0^2$	$\left \sqrt{X_n^2 + Y_n^2 + Z_n^2} \right $	Nos
İ	0.02890	- E162A.0	\$20.60 kg	,,	1 a
ı	0.02890	"	"	ly .	1 b
١	0.02890	"	11	· · ·	1 c
١	0.02890	"	"	,,	1 d
ı	0.02890	"		li .	2
ŀ	0.02892	"	"	"	3
ı	0.02887	0.44435	0.47897	0.47804	4
١	0.02888	0.44443	0.48155	0.47810	5
	0.02884	0.44443	0.47873	0.47810	6
l	0.02885	0.44410	0.47921	0.47782	7
	0.02900	0.44395	0.47868	0.47771	8
	0.02898	0.44403	0.47814	0.47777	- 9
	0.02896	0.44393	0.47870	0.47769	10
	0.02889	"	"	"	11
	0.02885	0.44393	0.48102	0.47769	12
	0.02877	0.44395	0.47932	0.47771	13
	0.02905	0.44369	0.47818	0.47748	14
	0.02900	11	"	"	15
	0.02893	11	"	,,	16
	0.02885	"	"	"	17
	0.02871	0.44381	0.47715	0.47760	18
	0.02869	"	,,	"	19
	"	"	,,	"	20
	0.02869	0.44376	0.47753	0.47756	21
	0.02906	0.44343	0.48072	0.47730	22
	0.02903	0.44343	0.48246	0.47730	23
	0.02899	"	"	"	24
	0.02894	0.44343	0.48478	0.47730	25
	0.02879	n	,,	"	26
	0.02871	0.44349	0.48138	0.47734	27
	0.02864	0.44334	0.48389	0.47722	28
	0.02858	0.44353	0.48123	0.47738	29
	0.02859	"	"	"	30

Nos	X_0	Y_0	Z_{0} Terror sec	$101 \cdot 80 \mid X_n \mid 80 \mid$
31	0.17022	0.03040		0.17421
32	0.17343	0.03606	0.45485	0.17431
33	0.17375	0.02247	0.44913	0.17425
34	0.17321	0.02569	0.44946	0.17426
35	0.17334	0.02819	0.44886	0.17426
36	0.17502	0.02628	"	0.17427
37	0.17489	0.02929	0.44680	0.17432
38	0.17399	0.02787	0.45579	0.17433
39	0.16994	0.02567	0.45473	0.17428
40	0.17124	0.02646	0.44282	0.17432
41	0.17184	0.02592	0.45359	0.17435
42	0.16759	0.02971	"	0.17434
43	0.17079	0.03123	0.46388	0.17437
44	0.17636	0.02405	0.44975	0.17431
45	0.16296	0.02669	0.45100	0.17435
46	0.17422	0.02580	0.45622	0.17434
47	0.17336	0.02844	0.44759	0.17431
48	. 0.17379	0.02801	0.44676	0.17434
49	0.17338	0.02700	0.44397	0.17439
50	0.17504	0.02829	0.44378	0.17436
51	0.17540	0.02785	0.44837	0.17432
52	0.17564	0.02442	"	0.17440
53	0.17407	0.02720	0.44639	0.17434
54	0.17484	0.02737	"	0.17440
55	0.17377	0.02851	0.44994	0.17438
56	0.17423	0.02760	0.45082	0.17441
57	0.17342	0.02813	" " 0.1441.0	0.17438
58	0.17492	0.02715	"	0.17443
59	0.17284	0.03059	0.41213	0.17444
60	0.17488	0.03198	0.44607	0.17444
61	0.16970	0.03261	0.45277	0.17442
62	0.17219	0.03100	0.44971	0.17445
63	0.17243	0.03235	0.44603	0.17444
64 a	0.17193	0.03068	F0G1 8-0	0.17447
64 b	0.17241	0.03079	36814.0	0.17447

Y_n	Z_n	$VX_0^2 + Y_0^2 + Z_0^2$	$ \sqrt{X_n^2 + Y_n^2 + Z_n^2} $	Nos
0.02853	_	60260.0	0.1160	31
0.02847	0.44328	0.48813	0.47716	32
0.02906	0.44318	0.48209	0.47708	33
0.02900	0.44318	0.48248	0.47708	34
0.02892	0.44320	0.48199	0.47710	35
0.02882	0.44320	48620,0	0.47710	36
0.02878	0.44308	0.48070	0.47696	37
0.02873	0.44308	0.48866	0.47696	38
0.02871	0.44327	0.48611	0.47716	39
0.02863	0.44318	0.47552	0.47708	40
0.02859	0.44308	0.48573	0.47696	41
0.02855	0.14,576	0.03096	0.47708	42
0.02837	0.44318	0.49530	0.47708	43
0.02905	0.44296	0.48270	0.47691	44
0.02903	0.44295	0.48029	0.47690	45
0.02902	0.44296	0.48908	0.47690	46
0.02899	0.44296	0.48083	0.47690	47
0.02897	0.44297	0.48115	0.47691	48
0.02890	0.44279	0.47758	0.47676	49
0.02888	0.44293	0.48124	0.47689	50
0.02886	0.44308	0.48227	0.47699	51
0.02891	0.44580	0.02,775	0.1,7418	52
0.02880	0.44297	0.47989	0.47691	53
0.02879	0.45128	0.0%0.0	6817	54
0.02871	0.44293	0.48319	0.47689	55
0.02871	0.44279	0.48410	0.47676	56
0.02869	0.44295	000000	0.47690	57
0.02857	0.4176	67880.0 18090.0	0.17837	58
0.02849	CIGILO	12020.0	0.17365	59
0.02845	0.44293	0.48018	0.47689	60
0.02840	0.44308	0.48462	0.47696	61
0.02839	0.44296	0.48255	0.47690	62
0.02834	0.44295	0.47929	0.47690	63
0.02830	ONDERES YES	81180.0	70171.00	64 a
0.02830	110Tt.0	0.02531	0.17605	64 1

Nos	X_0	Y_0	Z_0	X_n
64 c	0.17160	0.02822		0,17447
64 d	0.17168	0.02903	_	0.17447
65	0.16966	0.02985	0.44761	0.17452
66 b	0.17478	0.02423	0.44635	0.17442
67	0.17585	0.02428	0.44700	0 17439
68	0.18113	0.02315	952 <u>4</u> 4.8 (152	0.17440
69	0.18042	0.02384	0.44580	0.17440
70	0.17471	0.02863	0.44987	0.17448
71	0.17065	0.02582	"	0.17451
72	0.17492	0.03012	0.45299	0.17450
73	0.17577	0.03084	0.44623	0.17454
74		200, 100	,	(ac, 0.0
75	0.17078	0.03103	0.44708	0.17453
76	0.17120	0.03096	0.44576	0.17459
77	0.17470	0.02433	"	0.17449
78	0.17413	0.02574	0.45031	0.17451
79	0.17262	0.02824	0.44602	0.17452
80	0.17546	0.02791	0.44287	0.17455
81	0.17103	0.02845	0.44409	0.17452
82	0.17213	0.02751	0.44801	0.17458
83	0.17350	0.02764	0.45880	0.17459
84	0.17677	0.03115	0.44787	0.17463
85	0.17434	0.02992	0.45233	0.17460
86	0.17604	0.02863	0.44669	0.17467
87		n .	200	all n
88	0.17418	0.02775	0.44580	0.17472
89	0.17193	0.02908	0.44630	0.17465
90	"	"	"	"
91	0.17132	0.03330	0.45128	0.17466
92	0.17345	0.03387	0.44681	0.17463
93	0.17401	0.02913	0.45788	0.17463
94	0.17499	0.02900	- n	0.17474
95	0.17337	0.02979	0.44775	0.17470
96	0.17365	0.02621	0.44515	0.17466
97	0.17531	0.02685	0.44840	0.17468
98	0.17444	0.02967	0.45007	0.17466
99	0.17583	0.02869	0.44979	0.17477
00	0.17534	0.02721	0.44956	0.17483
01	0.17367	0.02683	0.44980	0.17480
02	0.17437	0.02778	0.45172	0.17485
03	0.17605	0.02831	0.44644	0.17492

Y_n	Z_n	$\sqrt{X_0^2 + Y_0^2 + Z_0^2}$	$ VX_n^2 + Y_n^2 + Z_n^2 $	Nos
0.02830	_	A Carlo	avery Lawrence	64 c
0.02830		_	<u>€</u> 1.56	64 d
0.02822	0.44279	0.47961	0.47678	65
0.02913	0.44256	0.47996	0.47657	66
0.02908	0.44267	0.48096	0.47667	67
0.02903		1800 A - 177	Boursela - attoonin	68
0.02903	0.44264	0.48153	0.47665	69
0.02878	0.44256	0.48344	0.47657	70
0.02871	"	hatela li	61600 " 180010	71
0.02845	0.44269	0.48652	0.47668	72
0.02841	0.44256	0.48060	0.47657	73
"	1 n	Indiana n wastin	Casterra " Lesson	74
0.02832	0.44259	0.47961	0.47661	75
0.02825	0.44251	0.47850	0.47655	76
0.02907	THE PERSON NAMED IN COLUMN	- Crement - Crement	网络护门 这轮的	77
0.02898	0.44243	0.48348	0.47649	78
0.02889	0.44243	0.47908	0.47649	79
0.02888	0.44233	0.47718	0.47641	80
0.02880	0.44244	0.47673	0.47650	81
0.02873	0.44228	0.48074	0.47637	82
0.02867	0.44228	0.49129	0.47637	83
0.02860	0.44222	0.48250	0.47631	84
0.02858	0.44233	0.48569	0.47641	85
0.02850	0.44214	0.48098	0.47624	86
"	"	n	"	87
0.02844	0.44202	0.47942	0.47614	88
0.02837	0.44223	0.47890	0.47632	89
"	and the one take	STEELS , ALLEGARIE	ACCOUNT HERE	90
0.02834	0.44223	0.48385	0.47632	91
0.02831	0.44237	0.48054	0.47645	92
0.02830	0.44237	0.48971	0.47645	93
0.02832	_		_	94
0.02827	0.44217	0.48106	0.47628	95
0.02879	0.44202	0.47842	0.47614	96
0.02867	0.44206	0.48253	0.47616	97
0.02859	0.42209	0.48361	0.47621	98
0.02838	0.44190	0.48379	0.47604	99
0.02861	0.44162	0.48331	0.47581	100
0.02850	0.44177	0.48291	0.47594	101
0.02839	0.44165	0.48500	0.47585	102
0.02844	0.44141	0.48109	0.47564	103
	The same of the sa	Tonson a	19800.0 - 05100.0	

Tableau V.

Valeurs et directions des forces qui troublent le champ terrestre.

Nos	X_0-X_n	Y_0-Y_n	Z_0-Z_n	h	8	t	i
, do	87	071.0	1867	10	23	(3.4.0)	
1 a	-0.00452	-0,00367	# 9083	0.00582	219°	1000	"
1 b	-0.00410	-0.00387	# D(0)8	0.00564	223°	1 h.On	"
1 c	-0.00310	-0.00409	'n	0.00508	234°	" "	"
1 d	-0.00345	-0.00356	"	0.00496	226°	"	"
2	-0.00381	-0.00246	"	0.00464	215°	"	"
3	-0.00418	-0.00418	" 2008	0.00591	225°	11.0"	"
4	-0.00412	-0.00296	0.00325	0.00509	216°	0.00604	33°
5	-0.00384	-0.00126	0.00527	0.00404	198°	0.00664	540
6	0.00386	-0.00111	0.00223	0.00402	196°	0.00461	290
7	-0.00445	-0.00008	0.00322	0.00445	181°	0.00549	360
8	-0.00826	-0.00663	0.00456	0.01059	219°	0.01153	23°
9	0.00446	-0.00565	0.00245	0.00720	232°	0.00760	190
10	-0.00465	-0.01121	0.00986	0.01214	248°	0.01563	390
1	-0.00453	-0.00308	, 45.44	0.00548	214°	14.0,	,,
2	-0.00398	-0.00011	0.00512	0.00398	182°	0.00649	52°
3	-0.00501	+0.00181	0.00352	0.00533	160°	0.00639	340
4	-0.00560	-0.00812	0.00329	0.00981	236°	0.01034	190
5	-0.00587	-0.00420	, 8008	0.00722	216°	E14.0,.	"
6	0.00345	-0.00272	11	0.00439	218°	"	,,
7	-0.00070	+0.00371	# 187	0.00378	101°	MIO,	"
8	-0.00696	+0.00206	0.00206	0.00726	164°	0.00755	16°
9	-0.00388	-0.00079	# 086H		191°	11	"
0	, 01	0.176	, 1008		, 76	11.0,	"
1	-0.00698	+0.00208	0.00250	0.00728	163°	0.00770	190
2	-0.00096	-0.00750	0.00448	0.00756	263°	0.00879	31°
3	+0.00131	-0.00274	0.00522	0.00303	296°	0.00604	60°
4	-0.00205	-0.00535	" 8888	0.00573	249°	0.00001	"
5	-0.00139	-0.00177	0.00869	0.00225	2320	0.00898	76°
6	-0.00130	-0.00143	, USBR	0.00194	223°	111.0	"
7	-0.00392	-0.00207	0.00595	0.00134	208°	0.00742	53°
8	-0.00824	-0.00177	0.01038	0.00443	192°	0.00142	51°
9	-0.00024 -0.00408	+0.00181	0.00563	0.00446	156°	0.01192	520
0	-0.00450	+0.00131 $+0.00234$	0.00000	0.00506	153°	0.00119	52

Nos	X_0-X_n	$Y_0 - Y_n$	Z_0-Z_n	h	8	37. t 37.	i
31	-0.00351	+0.00187	0.0	0.00398	152°	789040	1
32	-0.00088	+0.00759	0.01157	0.00764	970	0.01387	57
33	-0.00050	-0.00659	0.00595	0.00661	266°	0.00889	42
34	-0.00105	-0.00331	0.00628	0.00347	253°	0.00718	61
35	-0.00092	-0.00073	0.00566	0.00117	218°	0.00578	78
36	+0.00075	0.00256	0.0- , 0180	0.00267	286°	\$000000-	"
37	+0.00052	+0.00051	0.00372	0.00073	440	0.00379	79
38	-0.00034	-0.00086	0.01271	0.00092	248°	0.01275	88
39	-0.00434	-0.00304	0.01146	0.00529	215°	0.01262	65
40	-0.00308	-0.00217	0.00964	0.00377	215°	0.01035	69
41	-0.00251	-0.00267	0.01051	0.00366	227°	0.01113	71
42	-0.00675	+0.00116	0.00.00.000	0.00685	170°	0.00339	,,
43	-0.00358	-0.00286	0.02070	0.00458	141°	0.02120	78
44	-0.00068	-0.00500	0.00678	0.00505	262°	0.00845	55
45	-0.01139	-0.00234	0.00904	0.01162	192°	0.01473	38
46	-0.00012	-0.00322	0.01325	0.00322	268°	0.01364	76
47	-0.00095	-0.00055	0.00462	0.00110	210°	0.00476	77
48	-0.00055	-0.00096	0.00379	0.00111	240°	0.00395	74
49	-0.00051	-0,00190	0.00118	0.00197	255°	0.00229	31
50	+0.00068	-0.00059	0.00445	0.00090	319°	0.00454	79
51	+0.00108	-0.00101	0.00529	0.00148	317°	0.00548	74
52	+0.00124	-0.00449	178 , 0.0	0.00466	285°	F6000,0	"
53	-0.00027	-0.00160	0.00342	0.00162	260°	0.00379	64
54	+0.00044	-0.00142	85 () # AND	0.00148	287°	4880 " ,n=	"
55	-0.00061	0.00021	0.00701	0.00064	219°	0.00704	85
56	-0.00018	-0.00111	0.00803	0.00112	264°	0.00811	82
57	-0.00096	-0.00056	1(),(), ,, ,, ,, ,,	0.00111	210°	39000 OF	"
58	+0.00049	-0.00142	30.0 18.00 #	0.00150	286°	0.00133	"
59	-0.00160	+0.00210	00.0 " 1880	0.00218	127°	10100,0	"
60	+0.00044	+0.00353	0.00314	0.00356	83°	0.00475	41
61	-0.00472	+0.00421	0.00969	0.00633	138°	0.01157	57
62	-0.00226	+0.00261	0.00675	0.00345	131°	0.00758	63
63	-0.00201	+0.00401	0.00308	0.00449	117°	0.00544	34
64 a	-0.00206	+0.00249	0.00 T 8070	0.00323	129°	0.00018 0.00218	<u> </u>
64b	-0.00254	+0.00238		0.00348	137°	_	

Nos	X_0-X_n	$Y_0 - Y_n$	Z_0-Z_n	h	8	t	i
64 c	0.00287	-0.00008		0.00287	181°		
64 d	-0.00279	+0.00073	<u> </u>	0.00288	165°	_	_
65	-0.00486	+0.00163	0.00482	0.00513	161°	0.00704	44
66 b	+0.00036	-0.00490	0.00379	0.00491	274°	0.00621	38
67	+0.00146	-0.00480	0.00433	0.00502	287°	0.00663	41
68	+0.00673	-0.00588		0.00894	319°	Silver Contracts	
69	+0.00602	-0.00518	0.00316	0.00794	3190	0.00854	22
70	+0.00023	-0.00015	0.00731	0.00027	327°	0.00732	88
71	-0.00386	-0.00289	"	0.00482	2170	,,	"
72	+0.00042	+0.00167	0.01030	0.00172	760	0.01044	81
73	+0.00123	+0.00243	0.00367	0.00272	630	0.00457	53
74	0801,000	2000 , 118	"	, ,		,,	"
75	-0.00375	+0.00298	0.00449	0.00479	142°	0.00657	47
76	-0.00339	+0.00271	0.00325	0.00434	141°	0.00542	53
77	+0.00021	-0.00474	"	0.00474	273°	"	"
78	-0.00038	-0.00324	0.00788	0.00326	263°	0.00853	68
79	-0.00190	-0.00065	0.00359	0.00201	1990	0.00411	61
80	+0.00091	-0.00097	0.00054	0.00133	313°	0.00144	22
81	-0.00341	-0.00035	0.00165	0.00351	186°	0.00381	79
82	-0.00245	-0.00122	0.00573	0.00274	206°	0.00635	40
83	-0.00109	-0.00103	0.01652	0.00150	223°	0.01659	85
84	+0.00214	-0.00255	0.00565	0.00333	50°	0.00655	59
85	-0.00026	+0.00134	0.01000	0.00137	101°	0.01009	82
86	+0.00137	+0.00013	0.00455	0.00138	60	0.00475	73
87	"	TO IN AND	W. C	n	. "	"	"
88	-0.00054	-0.00069	0.0378	0.00088	232°	0.00392	77
89	-0.00272	+0.00071	0.00407	0.00281	165°	0.00495	55
90	"	"	"	"	"	"	"
91	-0.00334	+0.00496	0.00895	0.00598	125°	0.01076	56
92	-0.00118	+0.00556	0.00449	0.00568	102°	0.00725	38
93	-0.00062	+0.00083	0.01551	0.00104	127°	0.01554	86
94	+0.00025	+0.00068	"	0.00072	70°	"	"
95	-0.00133	+0.00152	0.00634	0.00202	131°	0.00665	72
96	-0.00101	-0.00258	0.00313	0.00277	249°	0.00418	48
97	+0.00063	-0.00182	0.00634	0.00193	289°	0.00662	73
98	-0.00022	+0.00108	0.00798	0.00110	102°	0.00806	82
99	+0.00106	+0.00031	0.00789	0.00108	16°	0.00797	82
00	+0.00051	-0.00140	0.00794	0.00149	290°	0.00808	79
01	-0.00113	-0.00167	0.00803	0.00202	236°	0.00828	749
02	-0.00048	-0.00061	0.01007	0.00078	231°	0.01007	869
03	+0.00213	-0.00013	0.00503	0.00213	356°	0.00546	67